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SUMMARY

.~ This is Part III of a series of literature reviews on hygrothermal i
effects on polymer matrix composite materials. It contains a review of ;
papers on mechanical properties as measured in static tests and includes the

effect of impact damage interaction with environmental conditions.~—

The other parts of the review are:

: Part I: Moisture and Thermal Diffusion “
. Part II: Physical Properties
Part IV: Mechanical Properties 2 i
- Part V: Composite Structures and Joints f
L Part VI: Numerical and Analytical Solutions ;
Part VII: Summary of Conclusions and Recommendations !

j

j A complete list of references is included in the Appendix and the §
numbers in the brackets appearing in the text refer to this list. g
l ‘3
-5 3
i i
i
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RESUME

Voici la partie III d'une série d’études documentaires traitant des
effets hygrothermiques sur les matériaux composites a matrice de polymére.
Elle contient une analyse des documents portant sur les propriétés mécani-
ques telles que mesurées lors d’essais statiques; les effets des conditions
environnementales su” les dommanges par chocs y sont également étudiés.
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Les autres parties de cette série sont les suivantes:

Partie I: Diffusion de I’humidité et de la chaleur
Partie II: Propriétés physiques

Partie IV: Propriétés mécaniques 2

Partie V: Structures et joints composites

Partie VI: Solution numériques et analytiques

Partie VII: Résumé des conclusions et recommandations

Une liste compléte des références est incluse en annexe et les }ﬁ
nombres entre parenthéses dans le texte se rapportent a cette liste.
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HYGROTHERMAL EFFECTS IN CONTINUOUS FIBRE REINFORCED CCMPOSITES
PART lli: MECHANICAL PROPERTIES 1 — STATIC TESTS

1.0 INTRODUCTION

b ekl il

During the past ten years numerous papers and reports have been published on the effects
; of moisture and temperature on polymeric matrix composite materials, The importance of environ-
; mental testing is recognized to the point where design allowables for existing materials or any new
material cannot be developed without it!99. 185, 257 1.

In this part of the review (Part III) results of mechanical tests on composite materials are

: revorted. The tests of interest were tension, compression, torsion, in-plane shear, bean: tests for
interlaminar shear and flexure tests. Numerous types of specimen design were used in these tests
and the properties reported are usually strength, modulus and notch or impact damage sensitivity.
In order to assess the amount of degradation of mechanical properties which might be expected to
occur due to temperature and humidity history, samples were often exposed to various conditions
prior to and during the test.

Environmental effects on composite materials properties as measured in fatigue and creep
tests will be reported in Part IV of the review.

] Bolt bearing capabilities of composites in a varying environment will be reviewed in Part V.

2.0 MATERIALS UNDER CONSIDERATION

e e e e Eo T B o Al " k5t e . i Ll 2 skt ! mrn s L

] The effects of moisture and temperature on a multitude of composite materials have been
3 reported. Sotne of the materials studied are very exotic and have never reached commercial use, while
: others have been commercially available for several years. The results presented below should be
treated as a rough guide to the effects on various types of fiber reinforced resins. The performance of
composite materials may vary substantially depending on the molecular structure and processing
history of the particular resin used, and this is illustrated in Figure 1 with reference to different
composites fabricated from Thomel Fabric 153. Terms like ‘epoxy’ or ‘polyimide’ resin are very
loose descriptions of the matrix and cover a wide variety of chemical structures.

e e T

Claments and Leel66] used unidirectional T300/5208 samples to study the effects of
quality control variabies such as batch variation, postcure and specimen quality under extreme
moisture conditions. They found that in the fiber direction, differences between batches produced
i greater differences in strength and modulus than did the high level of absorped moisture. However
' Chen and Hunter (Boeing)! 591 pointed out that mechanical property tests are not adequate for quality
assurance purposes. Slight differences in chemical content and cure quality may result in materials i
with equivalent short term mechanical properties, but having different rates of degradation due to the
environment. For this reason Boeing is committed to very accurate material characterization methods
supported by mechanical property tests.

The need for precise characterization of the resin has been recognized and a good example
is the work of Lamothe, Halpin and Neall 185!, who were engaged in developing design allowables for
glass/epoxy (S2-449/SP-250) for use in MILHDBK 174. Allowables include HPLC (High Pressure
Liquid Chromatography) for checking component weight percent of SP-250 and FTIR (Fourier
Transform Infrared Spectroscopy) for cure quality control. However, specimens used in most refer-
ences under review have not been prepared under strict controls and therefore results should be
treated as indications of the environmental stability of a given material.




3.0 TEST METHODS AND SPECIMEN DESIGN

Tension and beam tests are most frequently used. Tensile specimens are relatively easy to
produce and the loading method is simple. Various specimen shapes have been used, and these are ;
usually based on ASTM standards (i.e. ASTM 03039). These tests are primarily used to determine | {
unidirectional tensile strength but off axis tensile specimens (10° or +45°) are also employec to ‘
measure changes in in-plane shear strength and modulus. Less common are notched shear specimens i
(see Fig. 2) also loaded in tension, Chapinan (581 has described tension testing at elevated and cryo- .
genic temperatures for unidirectional and +45° specimens of graphite/polyimide. Special attention \
was paid to the application of strain gauges.

The beam tests are of two types: flexure and short beam shear, they can both be either
three or four point bend. The differences are in the ratio of span to depth. These are the easiest tests
to prepare and perform under varying conditions, as tabs are not needed and the fixtures developed
for room temperature can be used.

] Torsion tests for shear were used by Adsit!S! with torsion tubes, while Philips, Scott,
: Buckley!2331 and Hancox!! 221 used solid rod specimens.

s

Garcia and McWhithey! 104 | did both experiment and finite element analysis of rail shear

test specimens made for graphite/polyimide and concluded that it is a good method for measuring the
in-plane shear modulus but not strength.

For compression testing, several methods have been used in conjunction with environmental
conditioning and this seems to be the most demanding of all tests. Good references for these types of
test ure Adsit!S ), Grimes! 151, Camardal47 | and Shuart! 2661,

i eavias | it bl sm M Be b e

All of these tests provide information on mechanical properties which can be grouped into :
two categories -~ fiber or matrix dominated properties. Whether the test provides the information on
either of these property categories depends on both specimen loading and geometry (lay-up) i.e. a
unidirectional specimen lcaded in transverse direction to the fibers provides information on the matrix
dominated properties. Interpretation is not straight forward as the specimen may fail in a :node where
fiber splitting is dominant!!! |, Generally, it can be said that 0° tension and flexure tests provide
information on fiber dominated properties while other tests are matrix (or interfuce) dominated. This
is important as most fibers demonstrate good resistance to temperature aud moisture chunges (Kevlar

and other organic fibers are exceptions to this rulet!! 1) and it is usually the matrix or interface which
E shows degradation.

L One of the great advantages of composite materials is the capatility of changing laminate

' properties through various lay-up arrangements. The number of possible combinations, especially
when hybridization is included, is almost infinite and it is not feasibie to test all of them fully. Most
frequently unidirectional and crossplied samples are tested and results from these tests are used with
lamination theory to compute the effects of different lay ups. As residual and swelling strains
significantly alter the overall performance of a laminate and are not easily accountatle for in calcula-
tions, a iimited number of tests must be conducted on the most frequently used lay-ups. The results 5
of these tests are compared to theoretical results (lamination theory). Residual and swelling strains
will be discussed in Part II of the series.

e Jomim PN A < B O ST TS T USRS IR

4.0 NOTCHED AND IMPACTED SPECIMENS

For practical applications the notch sensitivity of a material is an important factor. It also
gives an indication of the demage and defect tolerance of the material. Low energy impact resulting in
damage on the threshold of detectability has limited the design allowable strains to about 4.103 umm/
mm in present day graphite/epoxies(99 1. It has been shown that such damage will not propagute if
post-impact strain values are kept below this limit.

B TR TR T P . PO S



P . Tepar- SEF

.3.

Interactions between the notch, internal damage and the environment are other important
factors requiring consideration. Wilkins! 316 |, Porteri 235 1 Bailie et ali27 ), Lauraitis and Sandorffl 186 |
all studied these type of interactions. Their results were similar despite the use of different materials,
lay-ups and tests. Wilkins studied T300/5208 samples containing holes. Specimens with different lay-
ups were saturated with water (1,.5% weight gain) at 82°C and 98% RH. Tensile tests were carriad out
at room temperature and at 93°C on dry and wet specimens. Porter used T300/934 samples with
various holes, notches and defects and three lay-up configurations. Conditioning was similar to that
used by Wiikins except that instead of exposure at 98% RH immersion in water was utilized. Tensile
testing was carried out at room temperature and 149°C with thermal spikes applied to reach testing
temperature in 60 seconds and loading in 180 seconds after beginning of heat up. Builie et al studied
the influence of holes on cloth and tape laminates (HMF 330C/34 and AS/3501-6). Specimens were
loaded in compression and iheir strength was determined at temperatures up to 157°C. Lauraitis and
Sandorff also loaded their specimens in compression. They studied the interaction of moisture, iow
temperature and low level impact in AS/3501-6 material conditioned up to 1.29% and 1.75% weight
gain of moisture.

The results of these tests led to the conclusion that notched or impacted material strength
is only slightly dependent on lay-up and that there is no clear difference in notch or defect sensitivity
as testing temperature or moisture content changes. This is probably because at higher temperatures
notch stress concentration is reduced as well as the strength of the material. These results are significant
and were best summed up by Porteri 2351 who concluded that environmental conditions generally have
the greatest effect in the noncritical design condition of no defect. It has to be borne in mind, however,
that only static lcads were used in these tests. The same may not be true in fatigue tests.

5.0 TEST PROCEDURES —- TEMPERATURE AND HUMIDITY PROBLEMS

The test conditions which have been employed are: 1) constant temperature (high or low),
2) temperature cycling including thermal spikes, 3) constant humdity including immersion, 4) combi-
nations of varying temperatures and humidities and 5) natural weathering on racks. Very few specimens
have been made from components that have been in actual service for a number of years. This is partly
due to the fact that data is often not available on the initial mechanical properties of many of the
earlier composite materials employed.

Since advanced composite materials are exposed to a wide range of temperatures during
their service (see Chapter 2 of Part I on environinental conditions), testing of conditioned specimens
has to be carried out under similar ranges of tempersture, and should include both the dry and wet
states. Very often, in connection with determining mechanical properties, the question of reversability
of property changes due to moisture is raised. Upon drying the property is usually restored or at least
partially so. This is important in understanding the mechanisms of degradation, but it is irrelevant if
one is only interested in developing design allowables, since, these should take into account the worst
possible case.

Testing of composites at room tempersture is difficult and standards have not been widely
accepted for all types of tests. This applied specifically to shear and compression tests. The problems
ure even greater for tests conducted under hot/wet conditions. There is a paucity of data that might
shed light on these problems. Sore researchers have reported on the problems of conducting mechan-
ical property tests in hot/wet conditions. Shen and Springer!26! ] studied the effects of temperature
and moisture on the tensile strength of composites. They have used a computer program to estimate
the thickness of the layer affected by three minutes of drying at different temperatures and the
moisture loss of specimen in these conditions. Some of the results of thase computations for
T30G/1034 system are presented in Figure 3. While loss of some moisture and consequently changes
in moisture distribution during testing has to be expected, losses should be minimized. Frequently
the time at temperature prior to testing is not reported and “soak times at temperature’’ of up to
30 minutes prior to testing are not uncommon.
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Whitney and Husman!3!14 | described the use of a flexure test for determining the environ-
mental . thavior of composites. Notably the authors recognized the need to control the weight loss,
As 90 seconds were needed to bring their 8-ply T300/56208 and AS13501-5 specimens to temperature
equilibrium, they calculated corresponding weight loss at the highest test temperature of interest. The
autiors assumed that the coefficient of diffusion is constant with temperature and calculated soak
times at lower temperatures required to obitain similar weight losses.

6.0 FAILURE MODES

The ultimate goal of materigls testing is development of data sets for designers (design
allowables). For CM it became obvious that this data is closely related to the definition of failure. As
failure mode is affected by the testing method and conditions in which it is carried out it is very
important how the failure is defined. Tests carried out on CM structures have to be related to the
design allowable data and this can only be done if the same failure has been induced in the structure
as in the earlier coupon and element test.

Whitney and Husman!3!4 | demonstrated that flexure testing provides a simple means for
determining environmental conditions which induce significant changes in mechanical behavior related
to flexure-stress conditions. Their results showed that moisture and temperature induce a change in
failure mode from filament dominated to matrix dominated,

If the results obtained in hot/wet conditions are to be meaningful and provide a basis for
quantitative assessment of the property loss relative to dry room temperature conditions, tests should
be designed in such a way as to induce the same failure mode for all conditions. Crossman and Mauril¢9 |
addressed this problem in connection with a interfacial shear strength hygrothermal degradation
evaluation, Depending on the span to depth ratio used and on environmental conditions a bend test
provides information on either the flexural strength or on the interlaminar shear strength. Crossman
and Mauri demonstrated that the four point bend test gives wider than three point bend test range of
span to depth ratios for which an interlaminar shear failure can be induced. Once the proper ratio is
chosen for dry room temperature conditions failure should always be through interlaminar shear. This
may not be true for flexurc where a transition to shear failure may occur if span to depth ratios are
not sufficiently high.

Changes in the failure inode with higher moisture content were also reported!<¢7 ! for
compression tests. In spite of great care in specimen preparation and test method design, tab failures
in tension and compression tests are reported, i.e.l!'151 Adsit!$ ] has discussed test methods and
procedures that have been used at elevated temperatures for graphite/epoxy and polyimide composites.
Tests include flexure, tension, compression and shear and test temperatures of up to 370°C are re-
ported. This work should be of interest to anyone involved in environmental testing of CM.

7.0 FRACTURE SURFACE ANALYSIS

Miller and Wingertl 2!7 | demonstrated that despite the f..t that fracture process is compli-
cated, fracture surface analysis does yield information showing fundamental differences between
resin systems and influences of environment. For this purpose scanning electron micrographs (SEM’s)
of gold plated specimens are most suitable, while optical microscopy on polished surfaces may provide
additional information,

8.0 FRACTURE MECHANICS AND ENVIRONMENTAL EFFECTS ON PROPERTIES

Success in the application of fracture mechanics to composites has been limited since the
models developed for metals cannot be directly applied. However, Beaumont and Harris! 3! | measured
the work of fracture required to fracture unidirectional carbon fiber reinforced epoxies. They tried
to establish the nature of the major energy absorbing fracture processes and to isolate mechanisms
which influence crack motion. Some samples were exposed to water at 23°C and steam (100°C)
up to two weeks prior to testing.
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A similar approach was adopted by Kaelble et al in series of articles! !137. 138. 159, 156,
They concentrated on developing theory and analysis of fracture energy and have studied the influence
of degradation of interfacial bond strerigth upon fracture energy. Permanent degradation of bond
strength was reported with a simultaneous increase in fracture energy.

Mandelll 205 | studied the effects of moisture on crack propegation in fiberglass laminates.
While water immersion caused reduced static and fatigue tensile strength and consequently increased
crack extension rates under cycling loading, it greatly reduced crack extension under static loading.
It was shown by the author that this was due to moisture increasing the intraply delamination region
in the damage zone thus veducing the local fiber stresses. For cyclic loading, this region is large even in
dry conditions and reduction of material strength plays a dominant role.

9.0 EFFECT OF HUMIDITY AND TEMPERATURE ON VARIOUS MATERIALS
9.1 Graphite and Boron Composites for Service Up to 200°C

Degradation due to exposure at constant temperature for extended periods of time has been
studied by Haskins, Kerr and Steinl166. 1271 After 10,000 hours at 121°C samples of AS/3501 in
[0} and [0/%45]s¢ lay-up which were tested at 177°C showed no degradation of tensile strength.
Similar samples aged at 177°C after 1000 hours began to degrade, and after 10,000 hours demons-
trated 20% and 57% decrease in strength at 177°C when compared to unaged samples. The greater
amount of degradation was observed for a [0/£45]5, lay-up.

Kong et all1 74| observed the effect of quenching from above the glass transition tempera-
ture (Tg) and subsequent Tg quenching for up to 105 min. on T300/5208 (145),¢ laminates. Decrease
of ultimate tensile strength (32%), strain to failure (93%), and toughness (68%) efter 105 min. were
interpreted as physical aging effects and were explained in terms of decreases in free volume and the
tendency to move towards thermodynamic equilibrium in the glassy state.

Thermal cycling effects were reported by Camahort, Rennhack and Coonsl 46 I. Samples
were cycled 25 times between - 196°C (liquid nitrogen) and 100°C (boiling water). Materials used
were HMF 330C/934 fabric and HMS/934, HMS/3501 and HMS/759 unidirectional tape graphite/
epoxies. All these materials were specified as 177°C cure but in order to reduce residual stresses were
cured at 135°C. Some samples were made from HMS/339 which is a 121°C cure material. Microcracking
was severe in all but the 121°C cured materials. However, there was no loss in RT tensile properties
with some improvement in transverse tensile strength, These results are not surprising as TTT diagrams
for thermosets indicate that the materials were not fully cured.

Mazzio and Mehan[209] thermally cycled HTS surface treated fibers in Epon 828 (manu-
factured by Shell) cured with hexahydropthalic anhydride (HHPA) and benzyldimethylamine
(BOHA) (100:78:1). The cycle temperatures were between -53°C and 149°C of which 250 and 500
were slow cycles and 500 were fast cycles (see Fig. 4). Results are presented in Figure 5. Mazzio and
Mehan prepared some samples with a lower volume fraction of fibers and studied residual stress
effects optically. Fibers after cure were in compression for low v;, and occasionally fiber buckling
was observed. During cycling some of these stresses may relieve themselves by breaking molecular
bonds and as a result mechanical properties will change. A decrease in compression strength seemed
to confirm this but the authors appear to have contradicted themselves by saying that interlaminar
shear strength increased through improved interfacial action. No effect of cycling rate was observed.

Loos and Springerl 1981 studied the effect of thermal spiking on Graphite-Epoxy T'300/
1034 composites. The material properties studied included moisture absorption, tensile strength and
buckling modulus. No effect was observed in the properties that were studied. Loos and Springer
compiled results of other researchers (see Table 1) and concluded that the effect of spiking depends
on the particular material system being studied. In most cases, the effect is small with fiber
dominated properties especially insensitive. See alsol200, 201},
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Inl 2671 Shyprykevich and Wolter determined compressive strength as a function of moisture
content. AS/3501-5A was used in two different lay-ups and testing was performed at room and ele-
vated (127°C) temperatures. At higher humidities (>1.2% wt gain) thermal spiking clearly degraded
the material, and this was related to glass transition temperature (Tg) exceedences. Thermal spiking
caused higher moisture absorption which lowered the compressive strength and also changed the
failure mode.

Browning, Husman and Whitney!4! | testedd AS/3501-5 in various lay-ups after near equili-
brium moisture gain at 71°C (75% and 95% RH). Test iemperatures were RT, 93°C, 121°C and 149°C.
Typical results are presented in Figure 6. Browning e. &' suggested three possible mechanisms of degra-
dation: 1) matrix plasticization associated with Tg, 2) degradation due to residual and swelling stresses
and 3) possible degradation ~f the interface, Tests on neat 35G1-5 led Browning et al to conclude
that room temperature properties are degraded due to matrix crazing.

Shen and Springer! 260. 2611 gtudied the effect of moisture and temperature on tensile
strength and buckling moduli of T300/1034 in various lay-ups. Different conditioning temperatures
and humidities were employed. The moisture distributions and losses due to testing in high temper-
ature were calculated. Typical results are presented in Figure 7 and were compared to previously
reported data (se2 Table 2 and 3). Results are consistent and indicate that:

a) Temperature and moisture had little effect on fiber dominated longitudinal strength below
100°C and slightly decreased strength at 180°C. Elastic moduli was not affected regardless
of moisture and temperature up to 180°C.

b) Transverse properties were severely degraded with increase in temperature and moisture and
both the modulus and strength maybe degraded by as much as 90% of their original values.

c) Distribution of moisture in 0° and quasi-isotropic laminates did not seem to affect the
results. For 90° specimens the moisture distribution may have influenced the absolute
value of ultimate strength and modulus but it was unlikely to lave affected the trend in
the data.

Bohlmann and Derby!38! used sandwich beam specimens to test T300/339 fabric (HMF-
330B) in the warp direction. Specimens were conditioned at 82°C and 70% RH and tested at both
room temperature and 177°C.

Crimes! 1151 made extensive studies of AS;3501-6 material in compression.. As different
lay-ups were tested, various loading fixtures were utnized. Testing was conducted at room (22.8°C)
and elevated (103°C) temperatures, with specimens in dry (0 - 0.4% wt gain) and wet (1.1 £ 0.2%
wt gain) strabes. Typical results are shown in Figure 8.

Laurnitis and Sandorffl!87] studied the effect of environment on the compressive strength
of T300/5208 and AS/3501-5A in various lay-ups. Specimens were soaked up to equilibrium wt gain
at 82°C - 90% RH and tested in -54°C, 22°C, 93°C and 135°C (above “‘wet” Tg). Behavior of
graphiie/epoxy laminates was divided into three regimes:

1) Long column range — elastic stability.

2) Very short column — specimens fully supported failure by crushing, delamination
(compression ultimate).

3) Intermediate short column — inelastic failures resulting in rupture.

It was found that in regime 1) the :.7havior of the laminaie was independent of temperature and
humidity while in 2) and 3) the ~..vironment affected results depending upon material and lay-up.
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Ekvall and Griffinl 99 | performed over 2000 coupon tests to develop design allowables for
T300/5208 tape and fabric laminates with a 3/16-inch hole, at -54°C, room temperature dry and
82°C wet (1% weight gain condition). Data were analyzed siatistically to determine the best fit
propability distribution and the results at the lower tail of the test data were compared to the mini-
mum values obtained from different regression equations. An overall best fit equation (in this case
normal distribution) provided good agreement near the lower tail of the distribution. Final design
allowables for worst environmental conditions (in this project), 3/16-inch diameter notch and
nonvisible impact damage were calculated (Table 4) and included a statistical reduction factor (B
allowable factor). This methodology can be used for other composite materials.

Several authors published data from shear tests conducted on pre-conditioned samples.
Philips, Scott and Buckley!233 1 used rod specimens prepared from graphite, glass and Kevlar 49 fibers
in HY750 epoxy resin. Results are shown in Table 5 and Figure 9. Crossman, Mauri and Warrenl 69|
used four point beam tests to study interlaminar shear properties of T300/5208 and T300/5209
specimens. Conditioning was 55% RH or 85% RH at 70°C with some samples dried. Testing was
conducted at 20°C, 70°C and 93°C. Several specimens were subjected to temperature cycles varying
from - 56°C to 70°C or 93°C. The results led the authors to conclude that neither testing temperature
nor conditioning significantly degraded T300/5208 dried samples. However, T300/5209 showed
significant loss of interlaminar shear strength (ILSS) after humid hot conditioning and this seemed to
be related to the exceedence of Tg (5209 is a 121°C cure material). For low moisture gain T300/5209
does not seem to be affected.

Halloffl 1211 tested short beam shear (SBS) strength of T300/5208, HT-S/3501 and
Fibredux 914C. Samples were subjected t~ different and sometimes severe temparature and humidity
treatments. However, Halloff concluded that the chemical composition of the polymer system most

significantly influenced the effects of heat treatments and moisture absorptions of composite
materials.

Lifshitz! 193 | measured longitudinal, transverse and axial shear properties of T300/5208
laminates. The test program included three strain rates, three temperatures and three levels of mois-
ture. The matrix properties were influenced by ail those parameters with axial shear exhibiting the
most var.ability (Fig. 10). Poisson’s ratio v,, did not change in these tests, however, the value was
slightly less than usual.

Augl inl23 ] presented the effects of moisture and test temperature on T300/5208 as de-
monstrated in beam tests. Figure 11 demonstrates the usefulness of three dimensional (3D) graphs
in reporting degradation of strength due to moisture and temperature,

All above reported tests were done on samples subjected to arbitrarily chosen conditions.
It is not known whether materials in real service, subjected to atmospheric conditions, would be
degraded to the same extent. To gain knowledge on the natural weathering of composites, several
materials have been exposed on racks in loaded and unloaded state and some tests were carried out
on specimens recovered from composite structures after extended period of service.

Trabocco and Standeri 29! | used two exposure sites (Panama Canal and Warminster, PA) to
represent tropical and temperate climates. Specimens were either painted or unpainted and loaded
in flexure with strain at 4000 umm /mm. Tests were carried out at room temperature and at 177°C
(Fig. 12). The materials that were used in this work have been replaced by those currently used in
aerospace industry (AS/3501-6, T300/5208 and AS/3004). The results for these new materials were
reported by Vadala and Traboccol294 1, Two aircraft carriers operating in the Pacific were included
as exposure sites. Tests were carried out at room temperature, 82.2°C and 121.1°C with materials
originally intended for 177°C service limited to 121.1°C. Tension, flexure, compression (IITRI
compression fixture) and SBS tests were carried out. Weight gains were monitored but specimens were
kept in sealed bags prior to testing. However, sealed bags do not prevent changes in moisture distribu-
tion. Typical test results are shown in Table 6 and Figure 13. In general Panama exposure was slightly
more severe than at Warminster. The rate of decrease of strength varies for each material system with
AS/3004 (graphite/polysulfone) showing better resistance to environment than epoxies.
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Int57! Chapman, Hoffman and Hodges and inl88! Dexter and Chapman presented some
results obtained by NASA for commerciel aircraft composite laminates, Composites were exposed at
ground exposure sites around the world and in actual service. No significant deterioration was ob-
served owing mainly to mild testing conditions. Information ¢n specimen lay-up and of failure modes
was not given. See alsol 29, 199.301,

Gibbins and Hoffman inf1101 report on a long term program by Boeing aimed at developing
accelerated aging met! “ds for composites used in commercial aircraft. Various graphite fiber and one
Kevlar fiber in epoxy materials were tested after exposure to actual flight conditions, on ground and
in accelerated laboratory chambers conditions. Inl!101 results obtained up to now are presented
(2 years of the projected 10 years of total program duration).

Coggeshall inl67 ] reported on the Boeing 737 graphite composite spoiler flight service
evelnation. This is the seventh annual report on a program involving 114 spoilers installed on 27
aircrait operating around the world. Various types of materials were used in the spoilers and samples
are also exposed on the ground. Periodically some spoilers and ground exposed samples are mechan-
ically tested. No significant deterioration of properties has been reported up to now.

9.2 Glass Composites for Service Up to 200°C

Glass composites have been available since the 1950°s and studies on environmental degra-
dation of these materials were initiated in the 1960’s. The degrading effect of moisture and temperature
on matrix dominated properties is similar to the graphite reinforced composites which i asically
depends on type of resin used.

It has been found that glass fibers are degraded by water due to a reaction between alkali
ions in the glass and water which in turn affects the siloxan bond (the structural backbone of glass),
forming an alkaline medium on the surface of the glass. If uncoated glass is used in a resin matrix the
rapid migration of water along the fiber interface is observed, This is paralleled by degradation of the
interface and tensile strength of the fiber. Present day glass fibers are used in strongly-bonded poly-
meric coatings and a considerable amount of research has concentrated on the reinforcement mecha-
nism of glass fiber reinforced plastics. Ishida and Koenigl 142! reviewed literature on this subject with
an emphasis on the microscopic aspects (molecular structures of glass/matrix interfaces). The glass/
matrix interface was studied as a three-phase system and includes a) glass/coupling agent interface,
b) coupling agent and c) coupling agent/matrix resin interface. Each of these phases was studied
individually using modern spectrometers.

Antoon and Koenig! !4 ! used Fourier-transform infrared (FTIR) spectroscopy to identify
irreversible chemical effects of moisture on highly cross-linked anhydride-cured epoxy resin. The
effects of high tensile stresses and presence of filler were also investigated. It was concluded that
hydrolitic attack of water on the ester linkages was accelerated in the alkaline media, enhanced by
the presence of inorganic filler (glass fiber) and was a mechanically activated process (external or
residual stresses). Further studies of the interface were reported by Koenig inl172], Spectroscopic
studies should be correlated with mechanical property changes and are indispensible in understanding
degradation mechanisms, A good example of such a study was work by Ishail 14! 1 where samples of
glass fabric/epoxy were subjected to several absorption-desorption cycles and their wrap and fill
strength was tested in tension. Infrared spectroscopy was used to analyze the water during immersion
and distinct traces of silica compounds were found. Ishai pointed out that cauticn is called for in
using elevated temperatures for accelerated testing, since correlation between short-term effects and
their long-term counterparts at low temperatures is not clear.

Scolal 2551 studied shear and flexura properties of three types of S-glass/epoxy composites
and their resins afier various temperature and hurnidity conditions. The typical results are presented
in Figure 14. One interesting observation was that the principal cause of composite shear strength
loss due to water is weakening or debonding of the resin-fiber interface, however, the strength and
modulus changes of the resin appear to be insignificant in the degradation process. Some degrading
influence of the resin was found by Scola in a further study!2541,
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Nicholas and Ashbee!l 226 1 studied the effect of freezing or boiling of phase-separated water,
and concluded that: 1) non-spherical water-filled cavities, specifically disc shaped cavities present at
water soluble inclusions propagate as cracks during the volume expansion associated with the water-
to-ice transition, 2) generation of the csmotic pressure is also responsible for the observed failure of
phase-separated water to boil during high temperature ez:cursions.

Docks and Buck!92 ] subjected several glass fiber/resin composites to thermal cycling and
grouped the resins according to th..ir susceptibility to degradtic:: in these conditions. Some vinyl or
modified vinyl resins seemed to perform best.

Rao et all238] measured the effect of moisture and glass contents on the Poisson’s ratio of ;
glass fiber reinforced p'ates. Laser interferometry was used to measure Poisson’s ratio and the results
are in Figure 15.

. Lamothe, Halpin and Neall 185 | developed design allowables for glass/epoxy (S2-449/SP-250).
Z ; After the test speciinens were subjected to different preconditioning cycles, tension, compression and
! SBS tests were carried out, Table 7.

Lubin and Donohuel 199 | presented unique and encouraging data from tests carried out on
samples of glass fiber composites cut from aircraft structures which were in service for up to 19 years
and the results were compared with data obtained at the time the structures were manufactured. Some
of the results are in Tables 8 and 9. Most of specimens showed excellent strength retention, but, only
a few of these parts were exposed to temperatures cver 82°C which may be the reason for the low
degradation.
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‘ 1 9.3 Aramid (Kevlar) Fiber Reinforced Composites :1

¢ Despite the growing amount of Kevlar composites being used in aerospace and other indus-
tries relatively little work has been published on hydrothermal effects on these composites. Kevlar
fibers are organic and, in contrast to carbon or glass fibers, they absorb moisture.

Wul322] studied strength degradation in filament wound Kevlar 49/XD7818, Jeffamine i
T403 epoxy. Samples tested in longitudinal and transverse tension, and in longitudinal compression i
were the flat coupon type. Transverse compression and shear was measured on tube specimens while
biaxial tests were performed on pressurized tube specimens. All specimens were dried in dessicant and
7 then subjected to one of the following conditions: 52% RH at 23°C, water at 23°C or water at 100°C
3 until moisture equilibrium was reached. The typical effect of moisture on ultimate strength is shown
in Figure 16, which indicates that substantial degradation occurs for room temperature water immer-
sion. (However, in service this is not likely to occur as much lower wt gains are observed.)

2 S b

Wu concluded that due to large differences between tensile and compressive strengths and
different degrees of degradation in the fiber-controlled vs matrix controlled strengths which caused the
failure surface to shift and deform, a polynomial third order tensor strength criterion would be more
suitable. However, this required four additional biaxial experiments to determine coefficients for the
polynomial. |

Allred!10) studied the effects of temperature and moisture content on flexura! response of
two Kevlar 49 fabric (181)/epoxy laminates (5208 and Ferro CE-9000 both 190°C cure) in two lay-
ups [0/90] and [+45, 0/90]. The testing temperature range was from - 55°C to 150°C. Both materials
exhibited fairly similar properties. For both lay-ups the results indicated that Kevlar 49/epoxies have
temperature dependent mechanical properties over the range investigated, and that moisture increased
temperature sensitivity. Load vs deflection for [0/90] CE-9000 is shown in ligure 17.

In flexure tests at 150°C and near the moisture saturation content (5% wt), a loss in
strength of 60-70% and effective stiffness loss of 40% was recorded. At 21°C the saturated specimens
were 35-40% weaker than dry material. Specimens having a {45, 0/90] lay-up seemed to be slightly
less sensitive to moisture, Failure modes which were distinctively different then for other composites
were reported, i.e. compression buckling of filaments of [0/90] or tensile delamination for the [+45,
0/90] lay-up.
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For the [£45, 0/90] lay-up the effects of voids, long term moisture exposure, freeze-thaw
cycling and reversibility of moisture exposure on drying was also investigated. All these conditions
were found to degrade laminate strength and degradation due to moisture exposure was found to be
irreversible (dried specimens had the same strength as specimens saturated with moisture at room
temperature).

Deterzsa et al!86 | used single filament techniques to establish the critical length of Kevlar 49
fiber in pol, .«amid (Nylon 6) film. Tests were performed at room temperature. It is surprising that
soaking in water seemed to shorten the critical length apparently strenthening the bond between the
fiber and matrix, but further studies are required to clarify this point.

Humphrey et all 136! subjected Kevlar 49, filament wound composites with various resins to
71°C and 95% RH. After 21 days of exposure specimens tested in short beam shear demonstrated
reduction in strength from 29% to 46% depending on type of resin.

Kevlar 49/Fiberite 934 epoxy composite, in transverse direction was tested by Allred and
Roylancel 1! 1, At 25°C moisture saturation (> 5% wt gain) caused a 35% decrease in ultimate strength
wid 25% decrease in elongation. Stiffness was found to be less sensitive with 4 14% decrease from the
dry room temperature value. Microscopy of the fracture surfaces revealed that property reductions
were accompanied by a change in failure mode from an interface dominated one in dry condition to
a filament splitting mode in the moisture saturation condition.

In 1973, Lockheed under a contract from NASA manufactured and installed Kevlar 49
fairing panels in three L1011 wide body transports. Concurrently, NASA runs ground-based exposure
tests on Kevlar 49 coupcns. Referencel 276 ] js the eighth annual flight service evaluation report which
includes the ground-based coupon test results. The Kevlar 49 fairings continue to perform satisfac-
torily and no mjaor damage or defects have been observed after eight years of service, However, these
components are lightly loaded and so far no tests have been performed to assess the amount of de-
gradation of properties or to measure the moisture content. Tests were carried out only on the ground
exposed samples. It was found that moisture contents stabilized after five years at slightly over 2% wt
gain. No degradation in flexural strength was found while shear and compressive strengths after five
and seven years decreased in the 15% to 20% range.

There are other on-going service evaluation programs, i.e.1301 which should provide more
information on degradation of Kevlar composites.

9.4 Composites for Service Above 200°C

An excellent review on synthetic resin matrices for use up to 300°C can be found in a
recent book by Delmontel 84 |, Recent papers have been reviewed which discuss moisture effects in
these materials.

One of earliest works of the effects of water on the properties of a glass/polyimide laminate
was reported by Delasil83 1, After 1200 hours of exposure to 100°C water or 100% RH specimens
made of 7781 glass fabric with 11008 finish and Monsanto’s Skybond 709 poly mide resin lost 90%
of their flexural strength when tested in dessicated state. The calculated value of the activation energy
of the degradation process indicates selective hydrolysis of the matrix material followed by a break-
down of the polymer-fiber interface.

Lisagorl 194 ! studied the effect of moisture on short beam shear and compression strengths
in HTS2/PMR15 and Celion 6000/PMR15. Specimens were conditioned to saturation at 100% RH and
82°C and tested at -96°C, 21°C and 316°C. Vacuum drying of as processed samples produced
improved mechanical properties. Results for “wet” samples should be compared with dessicated
samples, i.e. for compression strength compare Figures 18 and 19. Moisture conditioning of graphite/
polyimide composites produced moderate to severe reduction in compressive and interlaminar shear
properties at 316°C. This degradation appeared to be associated with the lowering of the Tg of the
matrix.
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Rummiler and Clark(250] presented results of thermal aging of HTS/710 for times up to
25,000 hours. Specimens were tested in tension at the aging temperature. The results indicate that
HTS/710 material shows degradation after 1000 hours at 288°C and after 10,000 hours it was severely
degraded. For lower aging temperature (232°C) no degradation was observed after 25,000 hours. Thus
the maximum service temperature for HT'S/700 should be reduced to 232°C for long time application
in aircraft such #= supersonic transports.

Scolal 256 | investigated the effect of thermal aging and moisture on several composite
systems consisting of addition type polyimides PMR-11, PMR-15, P13N in combination with the fiber
reinforcements S-glass, Thormel 300, HMS and HTS graphite fibers. PMR-11 and P13N systems proved i
to be fairly resistant to degradation due to muisture and PMR-11 systems demonstrated good flexural
and shear strength retention after 2500 hours in air at 288°C.

Pater!22] showed that PMR resins modified with N-phenylnadimide had superior properties
to standard PMR-15. Tests included isothermal exposure at 315°C for up to 1500 hours in air and
hygrothermal exposure for 360 hours in 95% RH at 82°C, followed by flexural and shear strength
testing at 315°C.

For graphite/polyimides strength degradation is directly associated wiih fiber thermo-
oxidative resistance while stiffness retention seems to be controlled by the thermal stability of the
matrix in flexural and shear testsl 1811,

Serafini and Hansonl25%] investigated the effects of thermo-oxidative and hydrothermal
exposure on T300/PMR-15 and HTS2/PMR-15 composites. It was very difficult to carry out tests in
“wet” condition at 200°-300°C since desorption at these temperatures was very rapid. This cast
doubt on the validity of other elevated temperature ‘“wet” results. The case of loaded and soaked
material being subjected to temperature spike is not unlikely in acutal service and greater strength
reductions for this case can be expected.

10.0 CONCLUSIONS AND RECOMMENDATIONS

Many conclusions can be reached from the preceeding sections and only the most important
ones are listed below along with recommendations for further work proposed by the reviewer.

(i) There is a growing need for standards for the testing of composites. The areas that have to
be addressed are:

i a) Standard methods are required for material characterization, including chemical
content and cure quality.

b) Specimen and fixture designs are required which take into ::ccount the hot/wet condi-
tions used in testing.

¢) Standard methods are required for predicting the realistic moisture contents which
3 can be expected during service.

d) Standard methods are required for preconditioning the sample before testing in wet . :
conditions. . y

e) Standard technique of testing under hot/wet conditions (temperature gradients,
humidities, loading rates, etc.).

QIR 7

f) Greater emphasis shouid be placed on the statistical analysis of data.

)
:

¥
N

P




T, T T T ST U TSR ATY ST T TN
S S e T I = ey R TR T YT e
R e = T s orrr G

AT o e

.12.

A A ST

(ii) Environmental conditions gei.".zally have the greatest effect on the noncritical design condi-
tion of no defect. There is no clear difference in notch or defect sensitivity as testing tem-
perature and moisture content changes.

(iii)  Slight differences in chemical content and cure yuality may result in materials with equi-
valent short term mechanical properties but different environmental sensitivities.

(iv}  Materi=is used in most references have rot been accurately characterized and therefore the
material properties reported may only be treated as indications. This is especially true of
environmental sensitivity of cqmposite materials,

» (v) Maximum service temperature for some epoxies, formerly advertised as 177°C (350°F)
should be lowered generally by 50°C due to hot/wet properties being greatly reduced.

(vi) Fiber dominated properties seem to be little affected by moisture and temperature.

=

(vii) Results of tests on samples exposed either on the ground or taken from structures that
were in actual service for several years, show little degradation due to environmental
exposure. However, most of these samples were only lightly loaded.
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¥ TABLE 1
{
\ SUMMARY OF EXPERIMENTAL DATA ON THE EFFECTS OF THERMAL SPIKES
b ON GRAPHITE/EPOXY COMPOSITES|198]
b
; Compres-
; Absorption Tenslle sion  Shear Flexural Buckling Tensile Fatigue
: Material Reference Behavior  Streagth Streagth Streagth Strength Moduius Modulus
13
[ T300/1034 Present work N N N
b 7300/934 Bohimsnn-Dergy [1] N
!': Rewnhart |2] N
5 T300/5208 McKapue et al {3} L
3 Kibler [4) I
F Augt [5] N
Lundemo-Thor [6] S L
T300/5209 Stoecklin® {7] S N N S
T300/2544 Stoecklin® [7] S s S H
T400/2544 Trabocco-Stander® [8) N-L S N
3 AS/3501 Stoecklin® {7} s s N
Trabocco-Stander® {8) N
AS/3501-8 Delsai-Whiteside [9] N {
AS/X-2546 Browning-Hartness [10) L !
HMS/339 Camahort et al (11 N N
HMS/934 Camahortetal [11 S N |
HMS6759 Camahortetal |11 s N ;
HMS/3501 Camahort etal |11 N N

HMS/X-2546  Browning-Hartness (10} L
HTS/3002 Trabocco-Stander® [8)

HTS/4617 Browning-Hartness [10]
HTS/ADX 516 Browning-Hartness [10}
HTS/PI3IN Browning-Hartness [10)
HTS/X-2546  Browning-Hartness |10}
Modmor 11/5206 Trabocco-Stander® (8]

Narmco 2387(nr) Browning-Hartness (10}
ERL 2256(n1) Browning-Hartness [10]
ERLA 4617(n1) Browning-Hartness [10}
X2546(nr) Browning-Hartness {10)

~ZZZ
z woanz

e ZZZZ

N - neghgibie effect; S — amall effect; L - large effect; (nr) neatresin; ¢ — weathering lest

NOTE: Numbers in square brackets refer to literature in [198]
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TABLE 2

- g

SUMMARY OF EXPERIMENTAL DATA ON THE EFFECTS OF MOISTURE AND
TEMPERATURE ON THE ULTIMATE TENSILE STRENGTH GF COMPOSITES! 28 }

Composite

Reference

Laminate Lay-Up Orientation

00

n/4

90°

Moist Temp Moist Temp Moist Temp

Remarks

Thornel 300/Fiberite 1034
Hercules AS-5/3501

Thoene! 300/Narmco $208

Modmor H/Narmco 5206
Courtaulds HMS/Hercules 3002M

HT-S/LRLA4617

HT-S/Fiberite X-9t1
HT-S/U.C.C.X-2546
PRD49/FRLB4617
HT-§/(8183/137-NDA-BIF, :MEA)
HT-S/tysot ADX-516

Hercules HT-S/710 Polyimide
HT-§/P13IN Polyimide

Boron/AVCO 5508
Boron/Narmeo 5508

Shen & Springer, 1976

Browning et al, 1976 {3]

Verette, 1975 |4}

Kerr, et ai, 1975 |5)

Kim & Whitney, 1976 {6}

Hoferet al, 1975 |7)
Husman, 1976 |8]

Hofer et al, 1974 [9)
Hofer et al, 1974 [9)

Browning, 1972 [10]

Browning, 1972 | 10]
Browning, 1972 |10]
Hanson, 1972 {11}
Hertz, 1973 {12]
Browning, 1972 110]

Nerr, et al, 1975 S|

Browning, 1972 {10]
Hofer, et al, 1974 |9)
Kaminski, 1973 {13]
Browning, 1972 [10]

zZzZz -~

ZZ

[l z ZZZ

ZzZr

| il A

} zzr

zZz

Zi i~z - ZZ:

ZI

N
N

t ZZ » Zror~Z Z

ZiC"= Z wnli

727 X7

[Z R R7 N7 M

w wonwy

z [ 7 2 I | i wnnrw|

| L

Limited data
(2--3 puints)
Two data points
for 99° laminates

Very scattered data
for 90° laminates
Only two data points
for temperature

Only two daia points
tor temperature
Only two data points
for 90° laminates

(a) N = Negligible efTect

() L - Littte etfect (< 30%)

NOTE: Numbers in square brackets refer to literature ‘nu [198)

(¢) S = Strong eltect (- 3077)
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TABLE 8

SUMMARY OF EXPERIMENTAL DATA ON THE EFFECTS OF MOISTURF, AND
TEMPERATURE ON THE ELASTIC MODULUS OF COMPOSITE MATERIALSI280]

Laminate Lay-Up Oricntaticn

Composite Reference o* T /4 9°
Moist Temp Moist  Temp [RIEN S Temp
BUCXLING TEST
Thornel Ou/Tiberite 1034 Shen § Springer 1977 N N N N LY H
TENSILE TEST
Nercules AS.$/3%01 Srowning, et al 197 (%) L N L N € s
Verette 1975 (&) N N N - s s
Kerr ot al 1978 (7] . N -
Thornel 300/Naruco $208 Kofer et al 1973 (8) L} N N N N N
Husean 1978 (9] - - . . [ s
Modmor Ul Narmeo $206 Hofer st al 1974 [10) N L] N N L s
Courtaulde HMS/Hercules 3002M Hofer et sl 1974 (10} N N N N X $
HT.S/ERLA-48)7 Browning 1972 (11) - - N S -
HT-S/Fiberace X-911 Browning 19°° [14) - . N L] - -
HT-S/UCC X-2846 Srowming 1972 {11) - . N L - -
PRD-49/ERLD-441? Hansom 1972 [12) - s - - - -
NT-S/(8103/137-10A-BR3: MEA) Mertt 1973 {13} . . - . N s
TENSILZ TEST
.;IT_-S"lesnl ADR-S16 Srowning 1972 (11) - . N s - -
UT-L 710 I'olyamide Rere et al 1978 (7] . N - N .
IT-S/PLN Polyinide Browning 1972 [11] - . L - -
Boran/ WGO 5805 ofer ot a1 1974 [10) L] N N L] s s
Boron/Siraco 5508 Srowning 1972 (1] - N N .
FOMPRESSIVE TTST
Hereule s AS-§713501 Verette 1975 [4} N N . L s
Thorne! Y00/Narmco 32CY liofer et al 1978 (8} L N N N - L N
Modmor 11/Normco $206 Hofer et al 1974 [10) N N N N s S
Courtevlds HMS/Mercules 300N Hofer et at 1974 L0} N N N N s s
Soron “AUCQ K508 Hofer et ol 31974 [10) a N N N < s

i
d

-y,

a) N e Negligiblc effect

») Lo Lit:le effect (<20V)
<) $ = Stremg etfec (»3u\)

NOTE: Numbars in square bryan iy refer to itexrat-ue in [260]
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TABLE 4
GRAPHITE/EFOXY TAPE AND FABRIC LAMINA DESIGN
ALLOWABLES®181)
MATERIAL
L0AD * PROPERTY
oiInEchion it ASNIC
MODULUS . 108 psi 208 9
TENSION STRENGTH - 10? P8I 97.4 38.2
STRAIN - 108 1y/IN 4150 | 3900
MoDuULUS . 108 ps) 188 8.7
COMPRESSION| STRENGTN - 107 PSI 74.0 40
STRAIN - 10°8 In/IN 4000 4000

*WORST ENVIAONMENTAL CONDITION. 3/18 IN DIA
NOTCH OR IMPACY DAMAGE

TABLE S
STATIC SHEAR PROPERTIES OF THE COMPOSITE MATERIALS AFTER
CONDITIONINGI 233]
- Shear Strength | Shear Modulus |} Shear Strain
Material Treatment o Quw ? (x 10=4
CFRP As-received 76 + 9 (8) 3.5 + 0.6 (8) 39 *+ 11 (8)
Soak:d 61 + 6 (4) 3.4 + 0.2 (@) 25 + 10 (4)
Dried 72 + 9 (4Q) 3.5 + 0.2 (&) 2 4 ()
Annealed 81 + 13 (4) 3.7 + 0.6 (4) 37+ 11 W
GRP As-received 79 + 3 (D) 3.8 + 0.2 (I 67 + 4 (5)
Soaked 55 + 6 (4) 4.3 + 0.2 (0 40 + 8 (4)
Dried 63 + 7 (4) 4.0 + 0.4 (3) M+ 4 (0
Annealed 82 + 2 (3) 3.5 0.3 (9 7% 4 Y
KFRP As-received 48 + 4 (€6) 1.5 + 0.1 (6) 27 + 3 (6)
Soaked 27 + 2 () 1.4 ¥ 0.3 (4 MF 1
Dried B+ 2 1.3 0.1 (4) 31 ¥ 5 (4)
Annealed 34+ 2 (4) 1.4 + 0.1 (@ 27 + 1 (3
Uncertainties are standard deviations
Figures in brackets axre the number of specimers
S ————— e i — s
- . o A - ’ . Vo
i s s iz v mu DR Ty, - R
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’ Tensile Strength
P.S.I.
R.T.
82.2%
3 1.1%
Shear Strength
P.S.I.
R.T.
82.2%
111%
Flexural Strength
P.S.I.
R.T.
82.2°%
1n.a%

e

& Nuclear Carrier

TABLE ¢

RESULTS OF EXPOSURE ABOARD US CONSTELLATION AND NIMITZ
CARRIERS OF AS/35018 MATERIALI4]

Urpainted  US CONSTELLATION  NIMITZ T
Unexposed Exposure Exposure
55831 62922 58821
52432 61674 63292
61016 650111 571167
6257 6149 6015
5964 6157 6807
6108 5920 4276
$3232 52178 56489
52389 47253 59933
53544 46164 49191
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TABLE 7

SUMMARY OF MECHANICAL PROPERTIES OF SP-250/S-2 FIBERGLASS EPOXY(188)

Fabrication

Layﬁp:

0°, quastisotrepic| S0 PS1

Prussufe: B Cure;yww- Post Cured: Plies:

30 min/250F

on min/250F | 8,12,16

Physical Properties

tlefght X Resin: Density: Avg. % voids AvgE. Thickness:
B 0.1 1.85 ¢.53 0,000 in/ply
Test Methods Tension: Compression: Interlaminar Shear:
ASTM D-5039 ASTM _D-3410 ASTM D-2344
Tempervature 15F 1A0F
Condition 0% RH 502 Rl 95% RH a5% RH
1 Honth 3 Months 3 Hontha 1 Month
Avg SD Avg sD Avg SD Avg sD
Tension, QI®
ultimate stress, ksi 74,32 4,94 75.36  3.00 | 62.87 3,42 48.26  13.09
ultinate atrain, 2 .48 0044 3.61 019 2.7 0,06 2,07 0.1)
lower modulus, 108 psi 3.50 0.28 3.22 0.13 | 3.31 o.18 3,36 0.18
upper modulus, 106 peil 1.80 0,15 1.77 .10 1.89 0.15% 1.93 0.10
secant modulus, 106 pst 2,12 0,14 2.13 .15 .26 0,14 2,32 0,10

Tension, 0°

uitinate stress, ks! 228.62 16.00 | 222,90 15.43 (174,25 13.20 141,53 1A.16
ultimate strain, % 3.1 0.43 .55 0.17 2.718  0.12 2.2 ¢.07
secant modulus, 106 psi 6.4) Q.56 6.37 0.0 6,41 0.7 6,49 0.25
Compression, QI
ultimate stress, ksi 73.11 .73 72,15 247 | ar.81 356 €2.76 3,88
ultimace strain, 2 2,96 0.4 3.06 0,13 2.1 0,23 310 0,35
secant modulus, 106 pai 2.5% 0.19 2.4 0,30 2.31  0.1A 2.31 0.5
Tnterlaminar Shear, 0°
ultimate stress, ksi 9.72 0.76 9.18 Q.64 9,44 0,67 .74 0.60

* (0/+45/-45/90)¢

ok (0/#:45/-45/90)2.
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: TABLE 8 :
: ;
S ° J
FLEXURAIL TESTS ON E-2A ROTODOME, SERIAL NO.1 AT 25 cliee] |
_ TEST R3FA AT NUErALLZED (0.011" PLY) CRIGINAL DATA {FPLEE PLATS) ;
STR. MOD. STR. “np, i
(3] MPa Msl a0 xSl Py NSl nPa %
E UrPLR SRIN - $3.8 - - 0.5 22 - - i
! PAINTED €6.6 190 - - 53.5 48 - . §
s7.0 393 . - 6.5 438 - - 1
b V6. 55.8 384 - - b8 4313 - - 1
PYECENT RiTinTION “9 - - - ;
vl ¥ra us ] “Fa aS1 Pa wl “Pa 4
3 AviiM SKIN - ?6.5 %6 .34 6.1 3.0 208 1”9 }
FAINTED n5.9 84§ 2317 6.3 57§ 29 230 1.8 1
6.4 526 2.37 6.3 02.0 &2 250 7.2
avG, 72.9 502 .36 1.2 ot.2 422 252 17.4
PeSRT SETENTION 100+ Q3.7 - -
3 kS1 “Pa ms1 Pa KS1 vPa s} "a i
CeTtR LN - s1.2 a .88 130 n3.0 42 1.9 130
"W FAINT S8 4N 1.88  13.0 16.0 255 2.0 13.8 1
%99 13 1.90 13.0 67.1 164 20 13,5
avG, 8.9 306 1.89  13.0 65.9 454 2.0 13.8 :
FERCENT RETSNTION 39.4 83.§ - N !
xSt “Pa Ms] GPa ast MPa ¥sy nha
INNIR SKIN - 53.5 349 1.36 9.4 61.5 324 1.8 12.4
WG PAINT ¥0IS- €6.3 39} 1.4 10.0 9.0 W7 1.9 13,1
ToRE CONTENTIV.IR 52,3 398 1,63 1.2 60.0 413 1.7 1.7
AVG. 55.9 185 1.48  10.2 60.2 415 1.8 12.4
PERCENT Rt TENTION 92.8 82.2 - -
CAP -
%0 PAINT, :30DED 43.9 302 - 65.0 188 - -
MOILTURE CONTENT:
0.243
FeRCENT RETENTION 67.5 - - . -
! Bl L
PR T e e 3 .
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: TABLE 9 i
] "
I TENSILE TESTS ON E-2A ROTODOME, SERIAL NO. 1, 25°C[199]
% Tehr tifA Ed L StACIIED L0 GLVTPLY) SEIUNAL LATA oLt fLulS)
F Teenatn oy lus Str. #S1 ad, MSIT
; i ) «51 “Pa us1 Pa kSl s
; St - foan -
! Tatted
E v.istare 7.2 1% 2.07 14.3 32.0 220 2.1 1.4
; T oetents 1173 /5.3 114 V.98 13.6 32.0 20 1.7 n.7
1 1.4 37 1.64 13.4 3.5 215 2.2 15.2
5.1 z42 2.89 13.0 6.5 251 2.3 15.3
] 37.8 260 1.88 13.0 36.5 251 2.3 15.8
246. 4.0 234 1.95 13.4 33.1 232 2.1 14.4
t fercent Futuntion 100+ 92.9
E t.rer Skn
3 Fairted
i vyigture 19.5 272 1.83 12.6 36.3 250 2.3 12.8
fintent: 1.46% 32.9 296 2.09 14.4 19.4 n 2.5 1.2
43.5 1300 2.21 15.6 8.4 265 2.6 17.9
AVG.  42.0 289 2.06 18,2 38.0 262 2.5 17.2
farcent Betention 100+ 82.4
varer Tkin
Y raint
Moisture 5.0 241 .7 12.2 .0 255 2.5 17.2
Content: 1.00% 8.0 234 1.88 13.0 40.0 276 2.8 19.3 '
8.0 265 1.94 13.4 9.0 269 2.5 17.2
32. 223 1.74 12.0 40.0 276 2.5 V7.2
8.5 265 1.98 13.6 40.0 276 2.1 8.6
VG,  15.7 246 1.86 2.8 39.0 9 2.6 17.9
Prrcint Fulention 91.5% 1.8 }
é
I - \ -
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EPOXY
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;
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E FIG. 3: MOISTURE LOSS OF SPECIMEN DURING
; THREE MINUTES OF DRYING AT DIFFERENT
. TEMPERATURES. M; AND M; ARE THE MOISTURE
] CONTENTS BEFORE AND AFTERDRYING. M,

DENOTES MOISTURE CONTENT AT FULL
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: - 1800 L (-260)
' CELANESE COMPRESSTON 1EST MFTHOD - ASTM D-3410
’ (AS/35CI-6 Graphite Fpoxy; F.V. = 62.5%)
: E__ = 112.7 cPa (16.35x30% psi), v = 0.3 [(-240)
. - 1600 IR v L Y
f - UNCENSORED DATA DATA CENSOREC BY FAILURE MODE —— 220 H
L -15.1u*strain -15.1u* -15.1us -15.1yp* }]
: -14004 I (-200) H
] RTD RID RID . RID . ;
‘ 13,3 % -13.30 ¢ ’
] 1 11,94 [ (-180) :
. ~1200~ RTW RTW u
) u ~11.Tu# S11.7us . F11.9us Foc
4 Fac -11.0ue - . B (-160) :
- T ETW [t ;
E RTW. - RTW o ;
. ~1000~ . ’ *
En 9.1u* L (-140)
: MPa ’ . -
3 ETW
] L (-120)
E -800-
E V=52 ).=17% Cve5Y Va8t cv-174:v=21% Lvesg kveo v=51 kvel2 Fv-91 kve91 (-100})
" ~600
E i - (-80)
: -400 o - (- 60}
] - (-40)
1 -2004
F(-20)
i 0 i 1 . 1]
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COMPOSITE NO. 107
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FIG. 14: WATER EFFECTS ON RESIN AND COMPOSITE[255]
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